1.1.1 Finding closest centroids
1 2 3 4 5
| v = []; for j = 1:K v = [v, sum((X - centroids(j,:)).^2, 2)]; end [v, idx] = min(v, [], 2);
|
The symbol means Norm not Absolute value the first time as I thought. 😂
1.1.2 Computing centroid means
$$\mu k := \dfrac{1}{\left | C_k \right |}\sum{i\in C_k}^{ }x^{(i)}$$
1 2 3 4 5 6
| for i = 1:K j = (idx == i); v = X(j, :); n = size(v, 1); centroids(i, :) = sum(v)/n; end
|
2.2 Implementing PCA
1 2
| sigma = X'*X/m; [U, S, V] = svd(sigma);
|
2.3.1 Projecting the data onto the principal components
1 2
| Z = X * U; Z = Z(:,1:K);
|
2.3.2 Reconstructing an approximation of the data
Translated by gpt-3.5-turbo