1.2 Regularized linear regression cost function
| 1
 | J = 1/(2*m)*sum( (X*theta - y).^2 ) + lambda/(2*m)*sum(theta(2:end).^2);
 | 
1.3 Regularized linear regression gradient
| 12
 
 | r = theta; r(1) = 0;grad = 1/m*(X'*(X*theta-y)) + lambda/m*r;
 
 | 
2.1 Learning curves
| 12
 3
 4
 5
 6
 7
 
 | for i = 1:mxi = X(1:i,:); yi = y(1:i);
 
 theta = trainLinearReg(xi, yi, lambda);
 error_train(i) = linearRegCostFunction(xi, yi, theta, 0)
 error_val(i) = linearRegCostFunction(Xval, yval, theta, 0)
 end
 
 | 
3 Polynomial regression
$$ h_{\theta }(x) = \theta _{0} + \theta _{1}(waterLevel) + \theta _{2}(waterLevel)^{2} + … + \theta _{p}*(waterLevel)^{p} $$
3.3 Selecting λ using a cross validation set
| 12
 3
 4
 5
 6
 7
 
 | for i = 1:length(lambda_vec)lambda = lambda_vec(i);
 
 theta = trainLinearReg(X, y, lambda);
 error_train(i) = linearRegCostFunction(X, y, theta, 0)
 error_val(i) = linearRegCostFunction(Xval, yval, theta, 0)
 end
 
 | 
